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MESSAGE 1

Al WON'T REPLACE CLINICIANS,
BUT CLINICIANS WITH Al WILL
REPLACE CLINICIANS WITHOUT Al




COMPLEMENTARITE VS. AUTOMATISATION

IA en clinigue du sommeil : Notre vision :

« Détection automatique des « Conserver I’expertise humaine : Annotations
evénements respiratoires manuelles ou semi-automatisées

* Annotation automatique des - Utiliser I'lA comme outil d’exploration
phases du sommeil physiologique des signaux

« Limites : précision variable, * Focus sur la severité des événements
manque d’interprétation clinique annotés

= adoption faible = Importance de I'explicabilité
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MESSAGE 2

PAS DE CONSENSUS UNIVERSEL,
MAIS PLUTOT UNE APPROCHE
MULTI-DIMENSIONNELLE




BEYOND AHI

« Pas de consensus scientifique sur LA meilleure métrique isolée

« Besoin d’un score de sévérité physiologique, pas seulement
statistique

* Intégrer des dimensions complémentaires :
* Modulation cardiague chronique
* Fragmentation corticale
»  Stress oxydatif

* Activation sympathique
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MESSAGE 3

METHODE D'EXPLICABILITE BASEE
SUR LA COMPARAISON ENTRE LES
EVENEMENTS




MODELE D'IA

Latent
Representation

Classifier

I-—— Output

10



MODELE D'IA
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REPRESENTATION LATENTE

s

Dimension 2
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Dimension 1
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REPRESENTATION LATENTE
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Pointed Ears
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REPRESENTATION LATENTE

Pointed Ears

Whiskers Length




ESPACE LATENT

Dataset

Pointed Ears

Whiskers Length




Dataset

CAS REEL
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ENTRAINEMENT
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Cat



ENTRAINEMENT
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Blele



ENTRAINEMENT
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Blele



ENTRAINEMENT
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Blele



Espace latent initial

ENTRAINEMENT

Espace latent optimisé
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|A EXPLICABLE

Question de recherche

Comment pouvons-nous exploiter |I'espace latent pour mieux comprendre
I'influence des caractéristigues d'entrée sur le processus décisionnel ?

2?

iImension

D

Dimension 1?
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PROCESSUS DE DECISION HUMAIN
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PROCESSUS DE DECISION HUMAIN

@ Comparaisons

—
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|A EXPLICABLE PAR COMPARAISON

Probleme : positions relatives dénuées de sens dans l'espace latent

Solution : contraindre I'espace latent et trier les entrées

eeemd Classifier s

Cat or Dog
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|A EXPLICABLE PAR COMPARAISON

Probleme : positions relatives dénuées de sens dans l'espace latent

Solution : contraindre I'espace latent et trier les entrées

Espace latent contraint

Cat or Dog

Discriminator P(real)
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|A EXPLICABLE PAR COMPARAISON

Rotation angle €
[90°,180°]




C'EST UNE CONFERENCE SUR LES CHATS ?

?




ADAPTATION DU MODELE AUX OSA

Classifier s di 02-1 ¥o] g Dle]¢

Discriminator P(real)
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ADAPTATION DU MODELE AUX OSA
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ADAPTATION DU MODELE AUX OSA

« Capacité de reconstruction : explorer de nouvelles caractéristiques

* Non-parcimonie : comparaison equitable entre patients et généralisable
a de nouveaux patients

» Classement des événements : évaluation de la sévérité des apnées
fondée sur la comparaison

4 Classifier e

PSG Channels

Apnea Event

severity
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1 METRIQUE DE SEVERITE

1T DIRECTION
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1 METRIQUE DE SEVERITE

1T DIRECTION

X5 . X4
Desaturation Area
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ET CA FONCTIONNE ?

Channel-by-Channel Effect of Increasing Sg Score on PSG Sigpa
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Park et al., 2008 & Kulkas et al., 2013

a7


https://synapse.koreamed.org/articles/1020629
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https://pubmed.ncbi.nlm.nih.gov/23417543/
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ET CA FONCTIONNE ?

Channel-by-Channel Effect of Increasing Severity Score on EEG Signals
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MESSAGE 4

UN SCORE COMPOSITE UNIQUE,
MAIS UNE RECHERCHE DE
BIOMARQUEUR PERSONNALISEE




CARTOGRAPHIE PERSONNALISEE DES BIOMARQUEURS

Baseline Data
® Inferred Epochs
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MESSAGE 5

UN OUTIL BIENTOT A VOTRE
DISPOSITION




nhancing OSA Assessment with Explainable A

Luca La Fisca', Celiane Jennebauffe!
Laurent Lefebvre?,

Abstract— E rtific ence (XAD) is a
rapidly growing field that focuses on making deep learning
models interpretable and unders ble to human decision-
makers. In this study, we introdu inet, a novel xAI
model applied to the assessment of Obstructive Sleep Apnea
(OSA) severity. OSA is a prevalent sleep disorder t
lead to numerous medical conditions and is currently assessed
using the Apnea-Hypopnea Index (AHI. However. AHI has
been criticized for its inability to accurately estimate the effect
of OSAs on related medical conditions. To address this issue,
we propose a hums tric XAl approach that emphasizes
i v between ¢ events as a whole and redu

ivity in diagnosis by examining how the model m:
ons. Our model nd tested on a
60 patients” Polysomnogi cordings. Our
demonstrate that the proposed model, XAAEnet, outper
models with traditional i h as convolutional
itoencoder (AE ariational autoencoder
. This study highlights the potential of XAl in providing
an objective OSA severity scoring method.

Clinical relevance— This study provides an objective OSA
severity scoring technique which could improve the manage-
apneic patients in clini

Marie Bruyneel?, Laurence Ris®,
bert®, Bernard Gosselin!

To the best of our knowledge, XAl principles have not
yet been applied to OSAs severity assessment. Most studies
involving Deep Learning (DL) algorithms in sleep data focus
on either automatically detecting sleep stages or apnea-
hypopnea events, estimating AHI [5]. or distinguishing OSAs
from other sleep disorders such as insomnia [6]. In this work,
we aim to reduce subjectivity in diagnosis by examining how
a DL algorithm makes its decisions.

Our approach to (XAl) is human-centered, prioritizir
similarity between items as a whole over mere statistical
averages of specific, and often decontextualized, features.
Indeed. as humans, we tend to rely on holistic comparisons
when making decisions, rather than solely focusing on iso-
lated attributes. Our goal is to leverage this innate human
tendency and develop XAI models that provide intuitive and
interpretable explanations for their decisions. thus enhancin
their reliability and trustworthiness. We therefore avoid the
limitations of inherent explainability models, which struggle
to consider higher-order information, and post-hoc explain-
ability models, which can lead to overly positive interpreta-

Explainable Al for EEG

Biomarkers Identification

in Obstructive Sleep Apnea Severity Scoring Task

Luca La Fisca'. Celiane Jennebauffe!. N
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cctly derived from the EF

By inspecting

fications, we

al regions

iy bands (0-8 Hz) are highly affected by the

severity. With this proof cepl, we pave

the way towards the use of Explainable Artificial Intelligence
(XAT) to make OSAs severity assessment more objective and fin

d across the community of sleep scientists

I as to hoost biomarkers discovery in n e tasks.

Index Terms—EEG, obstructive sl
semi-supervised k

ficial Intelligence, University of Mons, Belgium

re, Brussels, Belg,

Belgium

gium

the most efficient metric for OSAs severity, no consensus

has been found across the sleep re ch community [4]. We

therefore propose a novel approach to pave the way towards

y metric relying on Explainable” Artificial

Intelligence (XAD, The purpose of this work is to demonstrate
ance of using explainable Deep Learning (DL) m

identify the features of importance for OSAs severity

\ common se

assessment task in order to get rid of the subjective biases the
metrics proposed by clinicians suffer from. This demonstration
is carried out by identifying Electroencephalographic (EEG)
biomarkers considered of high importance by our DL model
when performing a severity classification task defined by
Polysomnographic (PSG)-derived features not or indire
relate y act, Al research works have
shown that OSA events trigger specific EEG power variations
that differ between pa OSA syndrome and
patients with moderate one

To the best of the authors™ knowledge, XAl principles have
never been applied 1o OSAs sev

the studies involving DL algorithms on
cither automatically detect

cvents from PSG signals, dist
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REJOIGNEZ L"AVENTURE

Phasel Phase Il
Collecte PSG annotées Etude clinique
Robustesse inter-clinique Participation active (co-auteurs)
Validation technique Données démographiques souhaitees
Pas de donnéees demographiques (optionnel) Etude rétrospective

Données
pseudonymisées

https://forms.cloud.microsoft/Pages/ResponsePage.aspx?id=ne2 SKIW1Ui6H-vsOCOzV8DUG5vVRGGxPnJrkQxfKTsZUMzYzMO0c2VDhSSk1FWDdXN1RFMEpaVUtHRS4u 64



MERCI

Luca La Fisca, PhD

luca.lafisca@umons.ac.be

TRUSTED Al LABS

Join us!
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